数字图像重压缩检测研究综述

来源 :计算机科学 | 被引量 : 2次 | 上传用户:zhouqiuhe1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着数字图像处理技术的广泛应用,数字图像处理软件在给人们的工作和生活带来便利的同时,由恶意篡改图像所引发的一系列社会问题也亟待解决,因此能够对图像的真实性和完整性进行判断的数字图像取证技术显得尤其重要。篡改图像必然会经过重压缩这一步骤,因此数字图像重压缩检测能够为数字图像取证提供强有力的辅助依据。文中对数字图像重压缩检测研究进行了系统的梳理,提出了数字图像重压缩检测的技术框架,详细阐述了无损图像压缩历史检测、有损压缩图像双重压缩检测、有损压缩图像多重压缩检测以及其他格式的重压缩检测的取证算法和思路,
其他文献
目标检测是计算机视觉领域中的一个研究热点。近年来,深度学习中的卷积神经网络在目标检测任务上表现突出。文中综述了深度学习在目标检测技术中的研究进展。首先,介绍了目标检测的两种方法和常用数据集,并分析了基于深度学习的方法在目标检测任务上所具有的优势。其次,根据深度学习的目标检测方法的发展过程,介绍了该方法所使用的经典卷积神经网络模型,并分析了各网络模型的特点。然后,从获取特征的能力、检测的速度及所使用
MapReduce作为一种分布式编程模型,被广泛应用于大规模和高维度数据集的处理中。其采用原始Hash函数划分数据,当数据分布不均匀时,常会出现数据倾斜的问题。基于MapReduce的
传统的人脸识别模型采用离线方式进行训练,同时由于人脸特征维数较高导致算法的实时性不足。文中分别从人脸特征与分类器两方面来构建快速的人脸识别算法。首先使用SDM(Supervised Descent Method)算法进行人脸特征点定位,提取每个人脸特征点邻域内的局部(Multi Block-Center Symmetric Local Binary Patterns,MB-CSLBP)特征,并将所
目前,以比特币和以太坊为代表的区块链系统已经日趋成熟,区块链技术成为学术界与工业界的研究热点。然而,这些区块链系统在实际应用中因数据存储模式限制而普遍面临着查询功
中断/延迟容忍网络(Disruption/Delay Tolerant Network,DTN)是从Ad-hoc网络中抽象出来的一种全新的网络模型。与传统的无线移动自组织网络不同,该网络模型的应用场景具有高