论文部分内容阅读
传统的故障预测方法难以对不同工况下的滚动轴承故障进行有效预测,为此,提出了一种基于BP神经网络和DS证据理论的滚动轴承故障预测方法。首先采用擅长于处理非平稳信号的小波包分解对多个传感器采集的原始振动数据进行特征分析,然后对BP神经网络的结构和参数进行优化设置并使用多个BP神经网络分别进行故障预测模型训练,最后利用DS证据理论将多个神经网络得到的预测结果进行融合并输出最终预测结果。实验结果表明,该方法能对不同工况下的滚动轴承故障进行有效预测,故障预测平均准确率达96.37%;且与相关文献提出的方法相比,所提