容忍最小收益下变保费率的更新风险模型

来源 :应用数学 | 被引量 : 0次 | 上传用户:flash021
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
经典的风险模型在研究破产概率时,定义的破产时刻为盈余过程首次取负值的时刻,而讨论低于某一限度时的时刻为破产时刻更有实际的意义.本文将这一限度定义为容忍最小收益,首先讨论了容忍最小收益下变保费率的更新风险模型最终的破产概率;并进一步讨论了它在大索赔情形下有限时间内的破产概率的性质.
其他文献
针对响应变量缺失下的半参数回归模型,构造模型中未知参数的经验对数似然比统计量,证明了所提出的统计量具有渐近X^2。分布,由此构造未知参数的置信域,并就置信域的覆盖概率及区
文中对通常意义下的核φ与定义在R^N上的有限Borel测度μ作卷积之后得到的u加以讨论,研究了u在边界R+^N+1处的渐近性质.根据μ的对称导数与φ的性质,得到了同N.A.Watson类似
本文给定一台比较型测试装置和确切的四个相同伪硬币出现的信息,作者研究最小测试数的探求问题,这个最小测试数能从A个有同样外观的硬币组成的集合中鉴别出四个相同的伪硬币,这
首先引进一类三次捕食者-食饵交错扩散系统,该系统是两种群Lotka—Volterra交错扩散系统的推广,现有的已知结果目前很少.本文应用能量估计方法,结合Shauder理论和bootstrap技巧讨
本文利用Liapunov泛函与Liapunov函数方法建立了无穷时滞脉冲泛函微分方程基于两种测度的一致稳定和一致渐近稳定的一个新的定理,并通过实例说明了所获结论的应用.
通过构造上、下控制函数,结合上、下解方法及不动点理论,研究了一类非线性项不具任何单调性的分数微分方程,获得了其正解存在性及唯一性的充分条件,推广了已有的一些结果.
本文中,我们利用变分方法研究了{-div(a(hx)|^p-2 △u)+|u|^p-2 u=g(x)f)(u),x∈R^N, u(x)≥0, x∈R^N,u∈^W^1,p(R^N) ,弱解的存在性.其中p〉N≥2, a与g是正
讨论了一类与年龄相关的非线性种群扩散系统的最优收获控制问题,证明了最优收获控制的存在性,并且给出了控制为最优的必要条件及其由偏微分方程组和变分不等式组成的最优性组.这