论文部分内容阅读
图像语义分割作为一种像素级分类技术,已应用于合成孔径雷达(SAR)图像的解译领域中。U-Net是一种端到端的图像语义分割网络,具有典型的编码-解码结构。其中,编码部分主要由卷积层和池化层组成,可以有效提取图像中的目标特征,但难以获取目标的位置和方向等信息。胶囊网络是一种能够获取目标姿态(位置、大小、方向)等信息的神经网络,因此,提出了一种基于U-Net和胶囊网络的SAR图像语义分割方法。此外,考虑到SAR图像数据集较小的特点,将U-Net的编码部分设计成视觉几何组(VGG16)结构,将预训练的VGG16模型直接迁移至编码部分。为了验证本方法的有效性,在两个极化SAR图像数据集上开展了建筑物目标的分割实验。结果表明,相比U-Net,本方法的精确率、召回率、F1分数和交并比更高,且能减少网络模型的训练时间。