论文部分内容阅读
恒成立条件下不等式参数的取值范围问题,涉及的知识面广,综合性强,同时数学语言抽象,如何从题目中提取可借用的知识模块往往捉摸不定,难以寻觅,是同学们学习的一个难点,同时也是高考命题中的一个热点.其方法大致有:①用一元二次方程根的判别式,②分离参数,转化成参数大于最大值或小于最小值,③变更主元利用函数与方程的思想,④挖掘几何图形含义利用数形结合思想求解.本文通过实例,从不同角度用常规方法归纳,供大家参考
Constantly established under the conditions of inequality parameter range, involving a wide range of knowledge, comprehensive, abstract mathematical language at the same time, how to extract borrowed knowledge from the title of the module is often unpredictable, hard to find, is a student learning Difficulties, but also the college entrance examination proposition in a hot.Methods are generally: ① with a quadratic equation root discriminant, ② separation parameters, converted into parameters greater than the maximum or less than the minimum, ③ change the main element using the function and equation , Digging out the meaning of the geometric figure and using the combination of figure and shape to solve the problem.This paper, through examples and general methods from different angles, is for reference