三角恒等变换的策略

来源 :考试·高考数学版 | 被引量 : 0次 | 上传用户:jwh777
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  三角公式很多,变幻莫测,在解题中如何把握好变换的方向,有目的地进行三角恒等变换,是高中学生经常头痛的问题,如果我们能掌握常用方法,按部就班就能事半功倍了.
  策略一: 三角名称的变换
  三角变换中,将三角函数利用同角三角函数基本关系化为弦(切),变异名为同名,目的为减少函数种数,易于变形和后面的计算.
  例1 已知tanθ=2,求sinθ+cosθsinθ-cosθ的值.
  分析:这是一个关于正弦和余弦的齐次式,若可以把所求的式子转化为只含有tanθ的式子,则题目就容易解答了.
  解:由已知的tanθ=2.
  sinθ+cosθsinθ-cosθ=sinθ+cosθcosθsinθ-cosθcosθ=tanθ+1tanθ-1=3
  策略二: 三角角的变换
  三角函数式中经常会出现较多的差异角,此法通常是指将倍角、半角、和角等化为单角后,再用同角三角函数关系求解,但有时也可以反其道而行之.
  例2 证明tanπ4+x-tanπ4-x=
  2tan2x.
  分析:此题的解法有多种,其中可以发现“2x=π4+x-π4-x”
  证明:右边=2tan2x=2tanπ4+x-π4-x=
  2·tanπ4+x-tanπ4-x1+tanπ4+x·tanπ4-x
  而tanπ4+x·tanπ4-x=1+tanx1-tanx·1-tanx1+tanx=1
  ∴右边=tanπ4+x-tanπ4-x=左边
  题目得以证明!
  评析:本题采用的方法是解三角题的常用技巧,寻找角的关系,常用到下列变换:2α=(α+β)+(α-β),α=(α-β)+β,π4+α=π2-π4-α等.
  策略三:三角公式的变换
  三角公式作为恒等式,在运用时,不能仅仅局限于它的正用,逆用公式不仅能进一步熟悉掌握公式,而且更便于解题.
  例3 求3tan12°-3sin12°(4cos212°-2)的值.
  分析:先看角,都是12°,再看“名”,需将切割化为弦,最后在化简过程再看变换.
  解:原式=3sin12°cos12°-32sin12°(2cos212°-1)(切、割化为弦)
  =3(sin12°-3cos12°)2sin12°cos12°cos24°(逆用二倍角公式)
  =23sin(12°-60°)sin24°cos24°(逆用差角公式)
  =43sin(-48°)sin48°=-43(逆用二倍角公式)
  评析:上述变换中多处逆用公式,可见逆用公式是多么重要,常用的还有sinx+3cosx=212sinx+32cosx,sinx+cosx=2sinx+π4等.
  策略四 常数“1”的运用和变换
  在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,尤其要重视常数“1”的各种变形,这样解增加了多种可用的工具.
  例4 已知tanθ-1tanθ+1=13,求sin2θ+sinθcosθ+2cos2θ的值.
  分析:这是一个关于正弦和余弦的齐次式,若可以把所求的式子转化为只含有tanθ的式子,则题目就容易解答了.联想所学过的公式知道sin2θ+cos2θ=1,sinθcosθ=tanθ因此得到下面的解法.
  解:由已知的tanθ=2.
  sin2θ+sinθcosθ+2cos2θ
  =sin2θ+sinθcosθ+2cos2θ1
  =tan2θ+tanθ+2tan2θ+1=22+2+222+1=85
  评析:这里对“1”的运用很灵活,考虑到公式tan(α+β)=tanα+tanβ1-tanαtanβ,分子部分的1用tan45°代换,而分母部分的项“1”不代换,系数“1”用tan45°代换,巧妙地化简.
  策略五 升次和降次的运用
  此策略在数学中的使用可以说是比较普遍的,如在解告辞方程时,往往是通过降低次数来求解分析题目的结构,掌握题目结构上的特点,通过降次升幂等手段,为使用公式创造条件,也是三角变换的一种重要策略,如cos2α=1-sin2α2,sin2α=1-cos2α2,cos4α+sin4α=1-2sin2αcos2α等.
  例5 证明:1-sin6x-cos6x1-sin4x-cos4x=32
  证明:左边=1-[(sin2x)3+(cos2x)3]1-(sin4x+cos4x)
  =1-(sin2x+cos2x)(sin4x-sin2xcos2x+cos4x)1-(1-2sin2xcos2x)
  =1-(sin4x-sin2xcos2x+cos4x)2sin2cos2x
  =1-(1-2sin2xcos2x-sin2xcos2x)2sin2xcos2x=32=右边
  所以原等式等证
  评析:在三角恒等变换过程中,若能充分利用降次与升幂等三角变换手段,能快速帮助我们解答一些涉及到高次幂的三角函数问题.
  上述方法只能说是三角变换中最常用,也是最基本得方法,在数学解题方法上,不可形成一种定势,数学解题方法是绝无定法,也是因为如此,数学才突显其美妙和精彩.
其他文献
摘 要:“后进生”转变是班主任乃至所有任课教师最头痛的一件事。新课标指出,教育是为了每一个学生的发展。因此转变“后进生”工作是刻不容缓、迫在眉睫的班级管理工作重点。  关键词:“后进生”;转变;观阿察  所谓的“后进生”,其实指的只是一些在某段学习过程中,因某一方面或几个方面的学习成绩、能力等相对于大部分学生来说,显得落后一些的学生。但是,明天的他们就不会成为先进了吗?要做好“后进生”转化工作,我
习近平、李克强对东北三省暴雨洪涝灾害作出重要指示8月14日以来,我国东北大部出现降雨过程,局部地区暴雨,引发洪涝等灾害。灾害发生后,党中央、国务院高度重视。中共中央总