论文部分内容阅读
在迁移学习中对变化后的数据集进行分类时,噪音导致分类结果不合理。为此,提出一种迁移学习数据分类中的扩展支持向量机(ESVM)算法。使用变化前数据集的概率分布信息及学习经验,指导缓慢变化后的数据集进行分类,使分割面既可以准确分割现有数据集,同时也保留原先数据集的一些属性。实验结果表明,该算法具有一定的抗噪性能。