论文部分内容阅读
针对视频分割的难点在于分割目标的无规则运动、快速变换的背景、目标外观的任意变化与形变等,提出了一种基于时空多特征表示的无监督视频分割算法,通过融合像素级、超像素级以及显著性三类特征设计由细粒度到粗粒度的稳健特征表示。首先,采用超像素分割对视频序列进行处理以提高运算效率,并设计图割算法进行快速求解;其次,利用光流法对相邻帧信息进行匹配,并通过K-D树算法实现最近邻搜索以引入各超像素的非局部时空颜色特征,从而增强分割的鲁棒性;然后,对采用超像素计算得到的分割结果,设计混合高斯模型进行完善;最后,引入图像