论文部分内容阅读
将地理知识融入空间地址,研究空间信息与语义信息融合的知识表示学习方法;将空间地址数据集在TransE模型和TransH模型上进行训练,通过元组分类和向量间距离评估的方法进行对比研究.研究结果表明:(1)在地址实体的表示学习任务中,TransH模型在对复杂关系的建模任务上明显优于TransE模型;(2)在语义知识基础上融入空间关系,能够有效地解决地址实体语义相似而空间距离不相近和空间距离相近而语义不相似的两大问题.语义关系与空间关系的融合,将能够挖掘更多有价值的信息,有利于进一步开展地理知识图谱的补全