【摘 要】
:
Geothermal energy is used worldwide primarily for generating electricity,space heating and spas.The geothermal resources that have been developed,however,produce only a small fraction of the available energy stored in the upper few kilometers of the earth
【机 构】
:
Key Laboratory of Groundwater Resources and Environment,Ministry of Education,Jilin University,Chang
论文部分内容阅读
Geothermal energy is used worldwide primarily for generating electricity,space heating and spas.The geothermal resources that have been developed,however,produce only a small fraction of the available energy stored in the upper few kilometers of the earth\'s crust(Tester et al.,2006).Although heat is present,rocks throughout most of the shallow crust lack the interconnected permeability necessary to form geothermal reservoirs.Attempts to create permeability by hydraulic fracturing were first conducted in the 1970s at Fenton Hill,New Mexico,USA (Wyborn,2011).More than a dozen Enhanced Geothermal System (EGS) projects followed in Great Britain,France,Japan,USA,Australia,Switzerland,South Korea,and China (Tester et al.,2006;Breede et al.,2013;Olasolo et al.,2016) (Fig.1).Despite seismic evidence that large volumes of rock were stimulated,subeconomic flow rates and low thermal recoveries indicate that the fractures were poorly connected (Grant,2016).Furthermore,temperature and drilling data suggest that the primary fluid conduits were preexisting fractures(Fig.2).Although none of the projects demonstrated full commercial viability of EGS,they did underscore the need for specific technological advances.These include:1)geoscientific and rock property characteristics of EGS resources;2) evaluation of in-situ fracture networks and stress fields;3) improved high temperature directional drilling technologies;4) novel zonal isolation tools and reservoir stimulation technologies;5) high-temperature tools for seismic monitoring of reservoir growth and prediction of induced seismicity;and 6) power conversion technologies (Feng et al.,2014;Lu,2018;Moore et al.,2021).
其他文献
沙四段杜家台油层是辽河油区J 99区块主力储层发育段,但J 99区块属于特殊的断块油气藏,断块较破碎,油气分布规律复杂.对该区块沙四段杜家台油层沉积微相划分、平面展布特征及物性特征研究分析和综合研究表明:J 99区块东北部杜家台油层发育为一套扇三角洲前缘亚相沉积,并细分出水下分支河道、河口坝、分支间湾及滨浅湖泥坪4个微相,平面相显示出砂体连续性差,以带状为主,且不同微相储层物性非均质性差异大.利用示踪剂技术对该研究区进行注采观察发现,在示踪剂注入井的周边,都分别监测出示踪剂显示,但时间、浓度与井距并不成正
苏A区块未动用区占区块面积44%,如何有效开发未动用区成为区块持续稳产的关键,近年来常规方法没有取得突破.研究认为,欠压实泥岩盖层中过剩压力对气体运移富集的导向作用可实现未动用区潜力目标优选.由于苏里格气田石盒子组顶部区域泥岩盖层普遍存在欠压实,单井表现为泥岩声波时差偏大,偏离正常压实曲线,在欠压实泥岩内流体存在过剩压力,井控区可以通过等效深度法计算过剩压力,而未动用区过剩压力空缺.研究发现苏A区块过剩压力最大值先出现在石盒子组盒1+2段,声波时差形成突变,与下部盒3段地层产生波阻抗差界面,在地震剖面上表
渤海油田已进入“精细勘探”阶段,利用地质录井第一手资料对油气显示层进行准确快速评价意义越来越重要,然而录井解释符合率低的现象却普遍存在,如何提高录井解释精度成为急需解决的难题.通过对近两年已钻探井分析,选取测、录井解释差异化较严重的典型井,以作业现场最基本的气测录井、岩屑录井、荧光录井以及地化录井资料为基础进行分析研究,创新建立气测值类比分析法、特征法及含油系数法,形成一套现场油气水层快速解释评价流程,有效提高了储层录井解释精度,很好地解决了录、测井解释差异化严重的问题.
近年大港南区潜山勘探取得重大突破,但由于该区勘探程度低,各项资料少,流体性质识别难度大.通过测井、录井资料相结合,建立了深电阻率与中子密度交会孔隙度模型,烃湿度比与烃平衡比模型,轻烃比与中烃比、重烃比关系模型,形成了多模型相结合的流体性质评价方法,最终确定油气层的识别组合标准.应用该标准解释6口井,油气层的解释符合率达到81% 以上,为储量评估和未来勘探部署提供了有力技术支撑.
自然伽马测井仪由于只能测量地层中总伽马值而不含方位信息,不能有效确定地层的变化情况.方位伽马测量方法能够获取到井眼周围不同扇区的伽马值,利用方位伽马测量结果,定向工程师可以分辨地层界面的岩性结构,从而在钻井过程中及时进行地质导向.从方位伽马测量的原理出发,阐述了随钻方位伽马测井仪井下仪器、地面系统、工具软件三部分的设计与实现过程,以及测井仪的刻度校准方法,并利用旋转试验和下井试验对测井仪的方位伽马和井斜测量性能进行了验证.试验验证表明,随钻方位伽马测井仪的测量结果有效可靠.
The Roosevelt Hot Springs Known Geothermal Resource Area (KGRA) is a Basin and Range-type geothermal resource,which is located in southwestern Utah.The integrated multicomponent geothermometry (IMG) approach is used to estimate the reservoir temperature a
储气库工作气量设计是多因素综合优化的结果,工作气量的大小与研究区内井的数量、最低外输压力、井径大小等条件相关,最终影响储气库建设成本.如何从多因素角度优化工作气量大小,达到储气库设计各参数全局最优化具有重要意义.以海上H岩性气藏为例,通过地层-井筒-井口多节点分析方法,考虑冲蚀气量与最小携液气量限制,优化单井不同地层压力下最大合理产能,根据注采物质平衡原理,建立储气库库存量注采动态预测模型;最后采用注采周期内平均产量法模拟不同井数下采气末期外输最低井口压力,建立不同井径下工作气量-井数-外输最低井口压力图
为保障陆梁油田正常生产,减少作业现场操作重复性及延时性,实现以最少人员管理现代化油田,建立了生产监控指挥平台.平台通过中控大屏对全厂生产运行各类综合信息、生产资源进行集约化管理,基于油区二维GIS导航,围绕陆梁油田生产巡检、承包商管理、应急指挥等业务,以“数据驾驶舱”模式实现油田各类生产运行信息的可视化、全局化展示和跟踪,全方位把控承包商风险,指挥调度承包商作业,快速建立应急指挥环境,搭建数字一体化管理网络.通过平台的建设与应用,实现远程监控生产运行、调度生产资源及快速决策指挥,从而强化承包商风险管控和安