论文部分内容阅读
针对传统相似手写汉字识别系统(SHCCR)受特征提取方法的限制,提出采用深度神经网(DNN)对相似汉字自动学习有效特征并进行识别,介绍相似字符集生成方法和针对相似汉字识别的深度神经网络的具体结构,研究对比不同的训练数据规模对识别性能的影响。实验表明,DNN能有效地进行特征学习,避免了人工设计特征的不足,与传统基于梯度特征的支持向量机(SVM)和最近邻分类器(1-NN)方法相比,识别率有较大的提高;且随着训练样本增加的同时,DNN在提高识别性能上表现得更为优秀,大数据训练对提升深度神经网络的识别率作用明显。