论文部分内容阅读
本文对一类带有齐次边界条件的广义Rosenau-KdV-RLW方程的初边值问题进行了数值研究,提出了一个两层非线性Crank-Nicolson差分格式,格式合理地模拟了原问题的两个守恒性质.然后,本文证明了差分解的存在唯一性,并利用能量方法分析了该格式的二阶收敛性与无条件稳定性.数值实验表明该方法是可靠的.