论文部分内容阅读
为了帮助用户浏览网页时更快的找到他所需要的信息,提出了一种新的用户个人代理:当用户浏览网页时,这种用户代理可以为用户自动加亮所感兴趣的词。用户访问过的网页首先根据内容被分到事先分好的几个目录中,这个分类用于理解用户访问的上下文。在每个目录中可以根据用户的访问历史纪录,用统计的方法得到用户的兴趣地描述。这些个性化的描述,可以为用户快速浏览,定位所需要的信息提供很好的帮助。实验结果证明了该做法改善了用户对网页的浏览状况。
In order to help users to quickly find the information they need when browsing the Web, a new user personal agent is proposed. When the user browses the Web page, the user agent can automatically highlight the interesting words for the user. The pages visited by users are first divided into several directories that are sorted in advance according to the content. This category is used to understand the context of user access. In each directory can be based on the user’s access history, using statistical methods to get the user’s interest description. These personalized descriptions can help users quickly browse and locate the information they need. The experimental results show that this method improves the user’s browsing status on the webpage.