论文部分内容阅读
奇异检测是高光谱图像的重要应用之一.针对目前研究中存在的问题,提出了一种新的基于光谱解译的奇异目标检测算法,用于高光谱图像处理.该算法利用光谱解译技术有效地实现了目标信息和复杂背景的分离,很好地抑制了背景对检测的干扰.解译后的误差数据仅包含丰富的目标信息且更好地服从高斯分布.利用主成分分析对解译误差数据进行变换,根据高阶统计量,定义局部平均奇异度来选择对于奇异检测最有效的主分量,并利用RX算子完成最终检测.为验证算法的有效性,利用真实的AVIR IS数据进行了仿真实验.结果表明该算法能够较大地改进经