论文部分内容阅读
在利用航拍遥感图像进行土地测量与变化检测时,需要对图像进行配准处理。为实现目标区域的高精度匹配,提出一种遥感图像配准方法。对图像进行U-net分割,以适用于小样本数据集的处理,针对不同区域特征的误差,将变量含异质噪声模型应用于配准参数估计,提高目标区域的配准精度。实验结果表明,与基于Harris角点的配准方法相比,该方法的全局平均配准精度提高41.39%,与基于SIFT特征点的配准方法相比,其感兴趣区域的平均配准精度提高16.67%。