论文部分内容阅读
针对汉语中存在的词汇歧义问题,根据左右邻接词汇的词形、词性和译文信息,采用卷积神经网络(convolution neural network,CNN)来确定它的真实含义。选取歧义词汇的消歧词窗,共包含两个邻接词汇单元,抽取其词形、词性和译文作为消歧特征。以消歧特征为基础,结合卷积神经网络来构建词义消歧分类器。利用SemEval-2007:Task#5的训练语料和哈尔滨工业大学语义标注语料来优化CNN的参数。采用SemEval-2007:Task#5的测试语料对词义消歧分类器进行测试。实验结果表明:相对于贝