论文部分内容阅读
针对连续空间下的强化学习控制问题,提出了一种基于自组织模糊RBF网络的Q学习方法.网络的输入为状态,输出为连续动作及其Q值,从而实现了“连续状态一连续动作”的映射关系.首先将连续动作空间离散化为确定数目的离散动作,采用完全贪婪策略选取具有最大Q值的离散动作作为每条模糊规则的局部获胜动作.然后采用命令融合机制对获胜的离散动作按其效用值进行加权,得到实际作用于系统的连续动作.另外,为简化网络结构和提高学习速度,采用改进的RAN算法和梯度下降法分别对网络的结构和参数进行在线自适应调整.倒立摆平衡控制的仿真结果验