论文部分内容阅读
身份特征与表情特征是人脸图像分析中的两组重要特征,传统的有监督正交人脸特征学习(supervised orthogonal facial feature learning,SOFFL)算法虽然能够在给定表情和身份标签时学习这一对特征,但因数据要求较高令其应用受限.提出一种低数据要求的无监督正交人脸特征学习(unsupervised orthogonal facial feature learning,UOFFL)算法,通过提取正交人脸特征的统一框架,假设人脸图像空间中仅有身份和表情变化,使用重构损失