论文部分内容阅读
目前关于概念漂移数据流的分类研究已经取得了许多成果,但大部分没有充分考虑到数据流中概念重复出现的情况,这将耗费大量的计算和内存资源,增加了分类错误的可能性.为此,基于概念的重复性提出了一种数据流集成分类算法,该算法运用集成分类思想处理数据流中的概念漂移,但在学习过程中不会将暂时失效的概念及对应基分类器删除,而是把它们的基本信息存储起来,方便以后调用,并可根据概念间的转换关系预测即将到来的概念,在提高分类精度的同时又提高了时间效率.实验结果验证了算法的有效性.