论文部分内容阅读
Being a wide variety of thin-layered interconnection components in electronics packaging with relatively small scale and heterogeneous materials, conventional numerical methods may be time consuming and even inefficacious to obtain an accurate prediction for the interface behavior under mechanical and/or thermal loading. Rather than resort to a fully spatial discretization in the vicinity of this interface zone, an interface model was proposed within the framework of micropolar theory by introducing discontinuous approximation. A fracture description was used to represent the microscopic failure progress inside the interface. The micropolar interface model was then numerically implemented with the finite element method. As an application, the interface behavior of a packaging system with anisotropic conductive adhesive (ACA) joint was analyzed, demonstrating its applicability and great efficiency.
Being a wide variety of thin-layered interconnection components in electronics packaging with relatively small scale and heterogeneous materials, conventional numerical methods may be time consuming and even inefficacious to obtain an accurate prediction for the interface behavior under mechanical and / or thermal loading. resort to a fully spatial discretization in the vicinity of this interface zone, an interface model was proposed within the framework of micropolar theory by introducing discontinuous approximation. A fracture description was used to represent the microscopic failure progress inside the interface. The micropolar interface model was As an application, the interface behavior of a packaging system with anisotropic conductive adhesive (ACA) joint was analyzed, demonstrating its applicability and great efficiency.