论文部分内容阅读
在分析了传统特征选择方法构造的4项基本信息元素的基础上提出一种强类别信息的度量标准,并在此基础上,提出一种适用于不平衡文本的特征选择方法.该方法综合考虑了类别信息因子、词频因子,分别用于提高少数类和多数类类别分类精度。该方法在reuter.21578数据集上进行了实验,实验结果表明,该特征选择方法比IG、CHI方法都更好,不但微平均指标有一定程度的提高,而且宏平均指标也有一定程度的提高。