论文部分内容阅读
针对数据挖掘算法中的聚类算法在聚类不规格形状数据点分布的处理难题,对基于密度梯度的聚类算法进行了研究。通过分析数据样本及其周边的点密度变化情况,选择沿密度变化大的方向寻找不动点,从而获取原始聚类中心,再利用类间边界点的分布情况对小类进行合并。阐述了基于密度梯度的聚类算法以及应用此算法进行电信行业客户细分的方法、步骤和案例。