论文部分内容阅读
组合分类器的经典算法AdaBoost即自适应Boosting算法是提高预测学习系统预测能力的有效工具.针对传统BP(Back Propagation,BP)神经网络在变压器故障诊断时存在不稳定和网络易陷于极小值等缺点,将AdaBoost扩展算法AdaBoost.M2与BP神经网络结合,形成基于Ada-Boost.M2-NN(AdaBoost.M2Neural Network)的变压器故障诊断模型.利用AdaBoost的集成提升作用,在一定程度上弥补了BP算法的不足.仿真结果表明:该模型不仅能将单个BP神经