论文部分内容阅读
依据空战态势、空战效能以及目标战役价值,采用威胁指数法建立了空战目标威胁评估模型。在威胁评估的基础上,研究了空战中基于Elman神经网络的目标威胁排序方法。考虑到Elman神经网络的学习性能和收敛性,采用附加动量项、自适应改变各参数学习率以及重置算法改进网络权值的学习算法。算例结果表明,采用Elman神经网络对空战目标进行威胁排序的方法是有效的,且改进的学习算法提高了网络的学习效率,有效地抑制了局部极小值的出现。该方法有利于提高火控系统的智能化水平。