论文部分内容阅读
文本分类是Internet文本信息处理的基础,该文通过对传统文本分类方法的研究,如支持向量机理论、多组判别分析、贝叶斯方法和中心向量法等分类方法,观察到分类器对于不同类别的文本其区分程度有所不同.因此提出了一种基于综合评价方法的多分类器决策机制。在参数训练过程中,引入了最优化理论中的直接搜索方法.形成一个容纳多个分类器的容器,它是各个分类器的最优化的组合,旨在获得最佳的分类精度。通过实验验证,得到了比较理想的分类效果。