论文部分内容阅读
在多示例学习问题中,训练数据集里面的每一个带标记的样本都是由多个示例组成的包,其最终目的是利用这一数据集去训练一个分类器,使得可以利用该分类器去预测还没有被标记的包.在以往的关于多示例学习问题的研究中,有的是通过修改现有的单示例学习算法来迎合多示例的需要,有的则是通过提出新的方法来挖掘示例与包之间的关系并利用挖掘的结果来解决问题.以改变包的表现形式为出发点,提出了一个解决多示例学习问题的算法———概念挖掘算法.该算法利用原本用于文本过滤的R-模式发现法将包表示成一个d维向量———概念向量.经过重新表示后,