论文部分内容阅读
为了提高灰色预测模型GM(1,1)在复杂系统模型中的预测精度,从原始数据和预测值两个方面对灰色GM(1,1)模型进行改进。根据原始数据的信息特点对模型作补充定义;预测值改进则利用背景值重构和粒子群优化算法对传统GM(1,1)模型的预测值进行改进,求出最佳预测值。结果表明:改进GM(1,1)模型的平均残差和相对残差都远远小于传统模型,其预测效能和可信度都有大幅提高。