论文部分内容阅读
实时最新森林植被信息的提取是林业航空植保作业的必要前提。论文以安徽省蚌埠市为研究区域,探讨了基于高分1号卫星遥感数据在亚热带农林植被混合地区的森林植被信息提取。根据植被物候信息差异选择了提取森林植被信息的5个关键时期高分影像,采用分区决策树方法监测森林植被的空间分布和面积信息,并与未分区决策树法的提取结果进行比较。结果表明:采用分区决策树法和未分区决策树法对于大中尺度森林植被信息提取的总体精度均优于85%。但分区决策树森林植被提取总体精度达到90.72%,较未分区决策树法提高3.80%、4.65%,Kappa系数达到0.81,较未分区决策树法提高约0.07~0.10,结合植被物候信息的分区决策树森林植被提取法好于未分区决策树法,能够满足林业航空植保作业的精度需求。具有较高空间分辨率、宽覆盖、短重访周期的高分1号影像,对于大区域的林业航空植保当年最新森林植被信息的提取表现出较大的潜力。