论文部分内容阅读
针对基于GPU和MPI并行的支持向量机(SVM)算法不适合于云计算环境,设计了一种基于多级SVM的并行支持向量机模型,实现了云计算环境下的序列最小优化(SMO)的并行算法。该算法通过MapReduce系统将大规模训练数据集划分为若干小训练集,再由这些小训练集开发多级的SVM,最后收集每一个SVM最优超平面附近的样本数据来训练另一个新的SVM。实验结果表明,该算法在时间消耗与分类正确率等综合方面比单机算法和传统并行算法获得更好的效果。