论文部分内容阅读
基于支持向量机(SVM)的迭代特征删除(SVM-RFE)法用于高光谱数据波段选择时,常用的非线性核函数训练时间长,并且每删除一个波段均需要重新训练SVM,总体效率低。研究表明在SVM分类中非线性核函数并不一定优于线性核函数。对比分析了两种核函数SVM在SVM-RFE中对分类结果的影响,并设计了两种提高SVM-RFE效率的策略:比率加速法和固定加速法。通过对AVIRIS高光谱数据实验得出:①SVM的分类精度随着冗余波段的增加而略微下降,即从分类精度上考虑SVM也需要特征选择;②相对于非线性核SVM-R