【摘 要】
:
数据集中处理的云计算模式提供交互迅速、绿色高效的多样化应用服务面临新挑战.将云计算能力扩展到边缘设备,提出了边云协同计算框架;设计了基于任务预测的资源部署算法,在云服务中心通过二维时间序列对任务进行预测,结合分类聚合、延迟阈值判定等优化边缘服务器任务运行所需资源部署;提出了基于帕累托优化的任务调度算法,在边缘服务器分2个阶段进行帕累托渐进比较得到用户服务质量和系统服务效应2个目标曲线的相切点或任一相交点以优化任务调度.实验结果表明:结合基于任务预测的资源部署算法与基于帕累托优化的任务调度算法在提高平均用户
【机 构】
:
中南大学计算机学院 长沙 410083;湖南商务职业技术学院商务信息技术学院 长沙 410205;广州大学计算机科学与网络工程学院 广州 510006;湖南大学信息科学与工程学院 长沙 410082
论文部分内容阅读
数据集中处理的云计算模式提供交互迅速、绿色高效的多样化应用服务面临新挑战.将云计算能力扩展到边缘设备,提出了边云协同计算框架;设计了基于任务预测的资源部署算法,在云服务中心通过二维时间序列对任务进行预测,结合分类聚合、延迟阈值判定等优化边缘服务器任务运行所需资源部署;提出了基于帕累托优化的任务调度算法,在边缘服务器分2个阶段进行帕累托渐进比较得到用户服务质量和系统服务效应2个目标曲线的相切点或任一相交点以优化任务调度.实验结果表明:结合基于任务预测的资源部署算法与基于帕累托优化的任务调度算法在提高平均用户任务命中率基础上,其用户平均服务完成时间、系统整体服务效应度、总任务延迟率在不同用户任务规模、不同Zipf分布参数α的应用场景下,均优于基于帕累托优化的任务调度算法和基于FIFO(first input first output)的基准任务调度算法.
其他文献
近些年基于位置服务的软件便利人们生活的同时,也带来了隐私泄露的风险.针对这一问题,提出一种基于噪声前缀树结构的轨迹数据发布方法.首先根据轨迹时空特性构建轨迹等价类,利用Hilbert曲线对轨迹位置点进行划分,得到划分区域的中心点,将得到的中心点聚合成新的轨迹,因此达到减少空间复杂度的目的然后构建前缀树,并将聚合的轨迹位置点存入到前缀树中,可以有效地提高查询效率最后为了保护节点中存储的敏感信息,利用等差隐私预算分配方式对前缀树节点中数据添加Laplace噪声,保证轨迹数据的安全性的同时也提高了数据可用性.通
针对电动车复合电源能量管理中传统模糊控制器设计主要依靠专家先验知识、主观性较大的缺点,提出一种基于鱼群算法优化的模糊能量管理策略,采用鱼群算法对模糊控制器的隶属度函数进行寻优。在MATLAB/Simulink环境下搭建仿真策略模型并导入到Advisor中联合仿真。结果表明,该控制策略能够合理分配蓄电池与超级电容的功率,且优化后的控制策略降低了整车功耗,提升了车辆性能。
事件时序关系抽取是一项重要的自然语言理解任务,可以广泛应用于诸如知识图谱构建、问答系统等任务.已有事件时序关系抽取方法往往将该任务视为句子级事件对的分类问题,而基于有限的局部句子信息导致其抽取的事件时序关系的精度较低,且无法保证整体时序关系的全局一致性.针对此问题,提出一种融合上下文信息的篇章级事件时序关系抽取方法,使用基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)的神经网络模型学习文章中事件对的时序关系表示,再利用自注意力机制融入上下文中其
面向工控网的攻击策略多种多样,其最终目的是导致系统进入临界状态或危险状态,因此,基于设备状态异常的攻击检测方式相较于其他检测方法更为可靠.然而,状态异常检测中存在攻击结束时刻难以准确界定的问题,构建攻击策略及系统异常状态描述模型,基于此,提出基于状态转移概率图的异常检测方案,实验结果表明该方案能够有效检测多种攻击方式.另外,针对语义攻击对系统状态影响的定量评估难题,提出基于异常特征和损害程度指标融合分析的攻击影响定量评估方法,实现系统所处不同阶段时状态的定量评估与分析.该项工作对于识别攻击意图有重要的理论
针对Android恶意软件检测存在特征引入过程主观性高、特征选择过程可解释性差、训练模型检测效果不具备时间稳定性的问题,提出了一种面向概念漂移的可解释性Android恶意软件检测方法InterDroid,该方法首先通过高质量的人工Android恶意软件分析报告引入权限、API包名、意图、Dalvik字节码4种特征.并通过自动化机器学习算法TPOT(tree-based tipeline optimization tool)获得InterDroid训练及对比算法,从而摒弃传统方法中繁复的模型选择与参数调整过
联邦学习(federated learning)由于参数服务器端只收集客户端模型而不接触客户端本地数据,从而更好地保护数据隐私然而其基础聚合算法FedAvg容易受到拜占庭客户端攻击.针对此问题,很多研究提出了不同聚合算法,但这些聚合算法存在防守能力不足、模型假设不贴合实际等问题.因此,提出一种新型的拜占庭鲁棒聚合算法.与现有聚合算法不同,该算法侧重于检测Softmax层的概率分布具体地,参数服务器在收集客户端模型之后,通过构造的矩阵去映射模型的更新部分来获取此模型的Softmax层概率分布,排除分布异常的
SDN是一种蓬勃发展的新型网络体系结构,复杂的网络业务流量组成对多样QoS的需求给SDN网络路由造成了巨大挑战。为了解决SDN的QoS优化问题,学术界与工业界在SDN诞生之初进行了深入研究,提出了很多建设性的解决方案。通过深入调研,介绍SDN的基本架构,汇总并对比主流量的SDN控制器;分析SDN控制器中集成的QoS相关模块和参数;分析并归纳目前比较有影响且具有创新性的QoS优化方案;提出目前SDN
从数据流中挖掘高效用项集是一项具有挑战性的任务,因为传入的数据必须在时间和存储内存约束下进行实时处理数据流挖掘通常会产生大量冗余的项集,为了减少这些无用的项集数量且保证无损压缩,需要挖掘闭合项集,它可以比全集高效用项集的集合小几个数量级.为了解决以上问题,提出一种基于滑动窗口模型的数据流闭合高效用项集挖掘(closed high utility itemsets mining over data stream based on sliding window model,CHUI_DS)算法.在 CHUI
计算命题公式的极小模型在人工智能推理系统中是一项必不可少的任务.然而,即使是正CNF(conjunctive normal form)公式,其极小模型的计算和验证都不是易处理的.当前,计算CNF公式极小模型的主要方法之一是将其转换为析取逻辑程序后用回答集程序(answer set programming,ASP)求解器计算其稳定模型/回答集.针对计算CNF公式的极小模型的问题,提出一种基于可满足性问题(satisfiability problem,SAT)求解器的计算极小模型的方法MMSAT;然后结合最近
针对基于似然和特征工程的调制识别方法存在需要人为提取特定特征和鲁棒性低等缺点,提出一种结合一维卷积神经网络和长短期记忆网络的深度学习模型,并将原始IQ信号转化为瞬时幅度和相位的调制信号数据,有效提高QAM16和QAM64之间区分度,从而提高10类数字和模拟信号的调制识别准确率。实验结果表明,在信噪比0 dB以上的平均准确率达到了93.21%,比现有方法准确率提高约3.4百分点,高信噪比下数字调制信