论文部分内容阅读
以双向长短期记忆网络(Bi-LSTM)为核心,结合多层卷积神经网络以及单向长短期记忆网络构建了多层面隐喻识别模型.基于多特征协同作用的思想,利用依存关系特征、语义特征、词性特征等多特征融合输入方法,丰富了模型的学习信息.为降低信息干扰,利用基于统计学的规范化文本输入方法提升模型识别效果.在英文语料词层面和句层面实验中,各个特征均表现出明显的正向作用.裁剪和填充处理及多特征协调作用在英文语料词层面研究中使F1值分别提升2.5%和5.1%,在句层面研究中F1值分别提升3.1%和1.9%.在中文语料句层面实验中