论文部分内容阅读
SAR图像分类是&讯图解译中非常重要的环节,但由于SAR图像中相干斑噪声的存在,使得传统方法不能很好地对SAR图像进行分类。再之,SAR图像分类具有计算量大、耗时长的特点,SAR所能获取的信息数据量也越来越大,如何快速、准确地对SAR图像进行分类以及时获取有用信息显得日益迫切。本文提出了一种快速的SAR图像分类方法,该方法将图像的空间域和频域特征相结合,并基于并行计算环境,对图像中的每一点都计算相应的小波能量特征、共生灰度矩阵特征和滤波后的灰度特征,并组成特征向量对SAR图像进行分类。实验结果证明该方法能