论文部分内容阅读
A 0.18 μm CMOS low noise amplifier(LNA) by utilizing noise-canceling technique was designed and implemented in this paper. Current-reuse and self-bias techniques were used in the first stage to achieve input matching and reduce power consumption. The core size of the proposed CMOS LNA circuit without inductor was only 128 μm 9226 μm. The measured power gain and noise figure of the proposed LNA were 20.6 and 1.9 dB,respectively. The 3-dB bandwidth covers frequency from 0.1 to 1.2 GHz. When the chip was operated at a supply voltage of 1.8 V, it consumed 25.69 mW. The high performance of the proposed LNA makes it suitable for multistandard low-cost receiver front-ends within the above frequency range.
A 0.18 μm CMOS low noise amplifier (LNA) by utilizing noise-canceling technique was designed and implemented in this paper. Current-reuse and self-bias techniques were used in the first stage to achieve input matching and reduce power consumption. The core size of the proposed CMOS LNA circuit without inductor was 128 μm 9226 μm. The measured power gain and noise figure of the proposed LNA were 20.6 and 1.9 dB, respectively. The 3-dB bandwidth covers frequency from 0.1 to 1.2 GHz. When the chip was operated at a supply voltage of 1.8 V, it consumed 25.69 mW. The high performance of the proposed LNA makes it suitable for multistandard low-cost receiver front-ends within the above frequency range.