论文部分内容阅读
针对血管内超声(IVUS)图像中各类斑块、超声阴影和血管分支等造成内膜(LU)与中-外膜(MA)边界难以准确检测的问题,提出一种结合堆叠沙漏网络(SHGN)和有条件生成对抗网络(C-GAN)的IVUS内膜与中-外膜检测的改进方法。首先根据血管形态特点,使用旋转、缩放和Gamma变换等方法将图像训练集扩充57倍,降低网络训练过拟合风险;然后利用对抗训练思想,构建基于L1、L2重建损失的联合损失函数,学习超声图像与其对应分割图像的映射关系,将IVUS图像分割为3种不同区域:血管外周组织、斑块区域和内腔区