论文部分内容阅读
针对丹江口流域秋汛期(9、10月)径流长期预报,为了消除网络输入的复共线性与网络训练的过拟合现象,将最优子集回归(OSR)和BP神经网络进行耦合,综合考虑训练误差和检验误差,来确定网络训练的最佳训练次数和终止条件,在此基础上提出基于OSK-BP神经网络的径流长期预报技术,并对丹江口秋汛期入库径流量进行了模拟和试报,结果表明:建立的模型稳定性良好,不论模拟还是试报精度均令人满意,特别是对预报年份中的丰枯特征均具有较好的体现。