论文部分内容阅读
【摘要】 微动状态通常独一无二,反映了目标的精细特征,在目标识别中有重要意义。目前研究多假设目标在雷达视线的投影上做简谐运动;然而在实际环境中,目标微动参数时变,目标在雷达视线上的投影也更加复杂,导致雷达回波调制形式更加复杂。已建立的模型不再适用。本文建立了一种时变空间进动目标雷达回波模型,分析了其微多普勒调制形式,并在此基础上估计进动频率。仿真结果验证了模型的正确性和估计方法的有效性。
【关键词】 进动 微多普勒 参数估计
Radar model of time-varying precession space target and parameter estimation
Abstract:Micro-motion states which reflect the sophisticated features of targets are always unique; it is of great important for target recognition. Most of the researches are based on that the projection motions of targets along the light sight of radar are sinusoidal; nevertheless, in real environment it is more complicated due to that the micro-motion parameters of targets might be time-varying, leading to more complicated modulation mode of radar returned signals. This paper establishes a model of precession space target undergoing time-varying micro-motion parameters, then the micro-Doppler is analyzed, finally we manage to estimate the precession frequency based on the model. Simulation study has confirmed the correctness of model and effectiveness of our algorithm.
Keywords:precession;micro-Doppler; parameter estimation
引言
微动是指目标或目标的组成部分除了主体平动之外的振动、转动等小幅运动。目标微动对雷达回波产生调制效应,使得目标的多普勒谱展宽,称为微多普勒效应[1]。微动特征反映了目标的结构和运动特性,是目标识别的重要依据。由于其独特性,雷达目标微动特征在目标探测、分类、识别领域中得到了廣泛的应用[3-5]。
已建立的目标微动模型包括刚体和非刚体两大类。常见的雷达目标微动模型为振动、旋转、翻滚、进动[1-3,6],行人[7-8]和直升飞机[9]的微动特征也是研究的热点。除了行人模型外,上述目标模型均假设目标在雷达视线的投影运动为简谐运动或简谐运动叠加多项式运动,然而在实际环境中,目标微动参数常常是时变的,目标运动在雷达视线上的投影也更加复杂。如中段弹道目标进动是一种典型的微动现象,与诱饵的运动不同,可作为弹头识别的依据。然而,中段弹道目标容易受到扰动(如释放诱饵时的扰动),使进动角发生时变[10]。
微动参数时变导致目标雷达回波不再是简单的正弦调频形式,继续运用已有的模型将会导致微动参数估计错误或精度降低,影响目标的有效识别,因此有必要研究时变微动目标。
为了分析微动参数时变情况下目标雷达回波的特性和估计方法,本文建立了进动角渐变情况下空间进动目标雷达回波模型,在此基础上分析了目标微多普勒的调制形式,并估计进动频率。
一、时变空间进动目标微多普勒调制模型
1.1 锥体进动模型
文献[2]推导了微动参数恒定情况下进动锥体目标上任意一点的径向距离模型,本文在此基础分析进动角渐变情况下的距离表达式 。
雷达观测锥体目标如图1所示,并假设目标符合雷达远场条件。建立参考坐标系O-XYZ:以目标质心为原点,锥体进动轴为Z轴,锥顶方向为Z轴正向,定义与初始时刻锥体对称轴共面且垂直于Z轴的方向为Y轴,X轴由右手准则确定。设目标对称轴与Z轴的夹角即进动角为θ(t)。目标进动角速度为ω,自旋角速度为Ω。设雷达视线在参考坐标系中的方位角为V,雷达视线与进动轴夹角为α,称为平均视界角。以目标质心O为原点、目标对称轴为Z建立目标本体坐标系O-xyz。设目标质心距雷达初始距离为R0[2]。
四、结论
本文建立了时变空间进动目标模型,分析了进动角线性变化对目标微多普勒的影响。当进动角变化时,目标的微多普勒形式较为复杂,上述的理论分析与实验结果表明进动角渐变情况下目标微多普勒不再是标准的正弦信号,出现了幅度调制,是一个多谐波信号,由于进动角变化速率相比进动频率较小,在进动频率处的正弦信号为主要成分,对目标微多普勒做傅立叶变换可获得进动频率的估计。 参 考 文 献
[1] Chen V C, Fayin L, Shen-shyang H, et al. Micro-doppler effect in radar: phenomenon, model, and simulation study [J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2~21.
[2]李康乐. 雷达目标微动特征提取与估计技术研究[D]. 长沙:国防科学技术大学,2010. [Li Kang-le. Research on feature extraction and parameters estimation for radar targets with micro-motions [D]. Changsha: National University of Defense Technology, 2010.]
[3]韩勋, 杜兰, 刘宏伟, 等. 基于时频分布的空间锥体目标微动形式分类 [J]. 系统工程与电子技术, 2013, 35(4): 684-691. [Han Xun, Du lan, Liu Hong-Wei, et.al. Classification of micro-motion form of space cone-shaped objects based on time-frequency distribution [J]. Systems Engineering and Electronics, 2013, 35(4): 684-691.]
[4] Yang F, Wang J, Chang L. Research on the life detection based on mirco Doppler features [J]. Advanced Materials Research, 2014, 846: 1153-1156.
[5] Tekeli B, Gurbuz S Z, Yuksel M, et al. Classification of human micro-doppler in a radar network [C]. 2013 IEEE Radar Conference (RADAR), Ottawa, Canada, April 29- May 3, 2013.
[6] Zhao, Y Q , Wang G Z, Bai Y Q, et al. A new method of translational compensation for space spinning target based on EMD [C]. 2013 IEEE International Conference on Signal Processing, Communication and Computing, Kunming, August 5-8, 2013.
[7] FOGLE O R E. Human micro-Range/micro-Doppler signature extraction, association, and statistical characterization for high-resolution radar[D]. Wright State University, 2011.
[8] Karabacak, C, Gurbuz S Z, Gurbuz A C. Radar simulation of human micro-Doppler signature from video motion capture data [C]. Signal Processing and Communications Applications Conference (SIU), 2013 21st, Haspolat, April 24-26, 2013.
[9] Zhang L, Huang G Q. Extracting of micro Doppler parameter of helicopter rotor based on time-frequency analysis [J]. Applied Mechanics and Materials, 2012, 130: 2696-2700.
[10]劉义峰,李明,杜云峰.基于微多普勒分析的弹道目标识别技术研究 [J]. 电子科技, 2010, 23(3):81~83. [Research on the discrimination of the ballistic targets based on micro-Doppler analysis. Electronic Science and Technology [J]. 2010, 23(3):81~83.]
[11] Li P, Wang D C, Wang L. Separation of micro-Doppler signals based on time frequency filter and Viterbi algorithm [J]. Signal, Image and Video Processing, 2013. 7(3): 593-605.
[12] Stankovic L, Djurovic I, Thayaparan T. Micro -Doppler -based target detection and feature extraction in indoor and outdoor environments [J]. Journal of the Franklin Institue, 2008, 1(3):1~23.
【关键词】 进动 微多普勒 参数估计
Radar model of time-varying precession space target and parameter estimation
Abstract:Micro-motion states which reflect the sophisticated features of targets are always unique; it is of great important for target recognition. Most of the researches are based on that the projection motions of targets along the light sight of radar are sinusoidal; nevertheless, in real environment it is more complicated due to that the micro-motion parameters of targets might be time-varying, leading to more complicated modulation mode of radar returned signals. This paper establishes a model of precession space target undergoing time-varying micro-motion parameters, then the micro-Doppler is analyzed, finally we manage to estimate the precession frequency based on the model. Simulation study has confirmed the correctness of model and effectiveness of our algorithm.
Keywords:precession;micro-Doppler; parameter estimation
引言
微动是指目标或目标的组成部分除了主体平动之外的振动、转动等小幅运动。目标微动对雷达回波产生调制效应,使得目标的多普勒谱展宽,称为微多普勒效应[1]。微动特征反映了目标的结构和运动特性,是目标识别的重要依据。由于其独特性,雷达目标微动特征在目标探测、分类、识别领域中得到了廣泛的应用[3-5]。
已建立的目标微动模型包括刚体和非刚体两大类。常见的雷达目标微动模型为振动、旋转、翻滚、进动[1-3,6],行人[7-8]和直升飞机[9]的微动特征也是研究的热点。除了行人模型外,上述目标模型均假设目标在雷达视线的投影运动为简谐运动或简谐运动叠加多项式运动,然而在实际环境中,目标微动参数常常是时变的,目标运动在雷达视线上的投影也更加复杂。如中段弹道目标进动是一种典型的微动现象,与诱饵的运动不同,可作为弹头识别的依据。然而,中段弹道目标容易受到扰动(如释放诱饵时的扰动),使进动角发生时变[10]。
微动参数时变导致目标雷达回波不再是简单的正弦调频形式,继续运用已有的模型将会导致微动参数估计错误或精度降低,影响目标的有效识别,因此有必要研究时变微动目标。
为了分析微动参数时变情况下目标雷达回波的特性和估计方法,本文建立了进动角渐变情况下空间进动目标雷达回波模型,在此基础上分析了目标微多普勒的调制形式,并估计进动频率。
一、时变空间进动目标微多普勒调制模型
1.1 锥体进动模型
文献[2]推导了微动参数恒定情况下进动锥体目标上任意一点的径向距离模型,本文在此基础分析进动角渐变情况下的距离表达式 。
雷达观测锥体目标如图1所示,并假设目标符合雷达远场条件。建立参考坐标系O-XYZ:以目标质心为原点,锥体进动轴为Z轴,锥顶方向为Z轴正向,定义与初始时刻锥体对称轴共面且垂直于Z轴的方向为Y轴,X轴由右手准则确定。设目标对称轴与Z轴的夹角即进动角为θ(t)。目标进动角速度为ω,自旋角速度为Ω。设雷达视线在参考坐标系中的方位角为V,雷达视线与进动轴夹角为α,称为平均视界角。以目标质心O为原点、目标对称轴为Z建立目标本体坐标系O-xyz。设目标质心距雷达初始距离为R0[2]。
四、结论
本文建立了时变空间进动目标模型,分析了进动角线性变化对目标微多普勒的影响。当进动角变化时,目标的微多普勒形式较为复杂,上述的理论分析与实验结果表明进动角渐变情况下目标微多普勒不再是标准的正弦信号,出现了幅度调制,是一个多谐波信号,由于进动角变化速率相比进动频率较小,在进动频率处的正弦信号为主要成分,对目标微多普勒做傅立叶变换可获得进动频率的估计。 参 考 文 献
[1] Chen V C, Fayin L, Shen-shyang H, et al. Micro-doppler effect in radar: phenomenon, model, and simulation study [J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2~21.
[2]李康乐. 雷达目标微动特征提取与估计技术研究[D]. 长沙:国防科学技术大学,2010. [Li Kang-le. Research on feature extraction and parameters estimation for radar targets with micro-motions [D]. Changsha: National University of Defense Technology, 2010.]
[3]韩勋, 杜兰, 刘宏伟, 等. 基于时频分布的空间锥体目标微动形式分类 [J]. 系统工程与电子技术, 2013, 35(4): 684-691. [Han Xun, Du lan, Liu Hong-Wei, et.al. Classification of micro-motion form of space cone-shaped objects based on time-frequency distribution [J]. Systems Engineering and Electronics, 2013, 35(4): 684-691.]
[4] Yang F, Wang J, Chang L. Research on the life detection based on mirco Doppler features [J]. Advanced Materials Research, 2014, 846: 1153-1156.
[5] Tekeli B, Gurbuz S Z, Yuksel M, et al. Classification of human micro-doppler in a radar network [C]. 2013 IEEE Radar Conference (RADAR), Ottawa, Canada, April 29- May 3, 2013.
[6] Zhao, Y Q , Wang G Z, Bai Y Q, et al. A new method of translational compensation for space spinning target based on EMD [C]. 2013 IEEE International Conference on Signal Processing, Communication and Computing, Kunming, August 5-8, 2013.
[7] FOGLE O R E. Human micro-Range/micro-Doppler signature extraction, association, and statistical characterization for high-resolution radar[D]. Wright State University, 2011.
[8] Karabacak, C, Gurbuz S Z, Gurbuz A C. Radar simulation of human micro-Doppler signature from video motion capture data [C]. Signal Processing and Communications Applications Conference (SIU), 2013 21st, Haspolat, April 24-26, 2013.
[9] Zhang L, Huang G Q. Extracting of micro Doppler parameter of helicopter rotor based on time-frequency analysis [J]. Applied Mechanics and Materials, 2012, 130: 2696-2700.
[10]劉义峰,李明,杜云峰.基于微多普勒分析的弹道目标识别技术研究 [J]. 电子科技, 2010, 23(3):81~83. [Research on the discrimination of the ballistic targets based on micro-Doppler analysis. Electronic Science and Technology [J]. 2010, 23(3):81~83.]
[11] Li P, Wang D C, Wang L. Separation of micro-Doppler signals based on time frequency filter and Viterbi algorithm [J]. Signal, Image and Video Processing, 2013. 7(3): 593-605.
[12] Stankovic L, Djurovic I, Thayaparan T. Micro -Doppler -based target detection and feature extraction in indoor and outdoor environments [J]. Journal of the Franklin Institue, 2008, 1(3):1~23.