【摘 要】
:
Phase retrieval from fringe images is essential to many optical metrology applications. In the field of fringe projection profilometry, the phase is often obtained with systematic errors if the fringe pattern is not a perfect sinusoid. Several factors can
【机 构】
:
SmartComputationalImaging(SCI)Laboratory,NanjingUniversityofScienceandTechnology,Nanjing210094,China
【出 处】
:
PhotonicsResearch
论文部分内容阅读
Phase retrieval from fringe images is essential to many optical metrology applications. In the field of fringe projection profilometry, the phase is often obtained with systematic errors if the fringe pattern is not a perfect sinusoid. Several factors can account for non-sinusoidal fringe patterns, such as the non-linear input–output response (e.g., the gamma effect) of digital projectors, the residual harmonics in binary defocusing projection, and the image saturation due to intense reflection. Traditionally, these problems are handled separately with different well-designed methods, which can be seen as “one-to-one” strategies. Inspired by recent successful artificial intelligence-based optical imaging applications, we propose a “one-to-many” deep learning technique that can analyze non-sinusoidal fringe images resulting from different non-sinusoidal factors and even the coupling of these factors. We show for the first time, to the best of our knowledge, a trained deep neural network can effectively suppress the phase errors due to various kinds of non-sinusoidal patterns. Our work paves the way to robust and powerful learning-based fringe analysis approaches.
其他文献
A new method for natural color image segmentation using integrated mechanism is proposed in this paper. Edges are first detected in term of the high phase congruency in the gray-level image. K-mean cluster is used to label long edge lines based on the glo
A compact in-fiber refractive index (RI) sensor based on a step index multimode polymer optical fiber with a micro-hole drilled by a miniature numerical control machine is presented. A good linear relationship between the transmission and RI over a large
1983年9月28~30日,在苏联明斯克举行了第三次光谱学中的超快速过程讨论会。会上有120篇报告,包括以下各方面:在凝聚介质和气体介质中的超快光物理过程,生物系统中光化学过程和快流逝过程的动力学研究:超短光脉冲的新振动和测量装置,仪器和实验方法。
从几何光学角度出发,分别对含有像散和彗差的波前编码系统成像特性进行了分析,推导了含有像散和彗差波前编码系统的光线像差,计算了光线像差的上下边界。通过光线像差及点列图分析了波前编码系统对像散和彗差的敏感程度。结果表明,当系统同时含有离焦像差和像散时,光线像差较仅含离焦像差的波前编码系统有所放大,点列图弥散程度增加,进而使系统调制传递函数(MTF)有较大程度的下降,影响中间图像的可复原能力,但其仍保持着较好的离焦不变特性。当系统同时含有离焦像差和彗差时,由于切向和径向的光线像差及点列图变化并不对称,彗差的存在
微微秒激光脉冲是几种新技术的关键,目前,人们正用这些新技术来研究生物物理学、等离子体和凝聚态物理学中极快的瞬变状态。
本文报道了利用单光束方法研究C60/C70甲苯溶液的非线性光学性质,C60/C70的浓度为3.5×10-3 mol,C60:C70=3:1,实验所用的泵浦光源为被动锁模Nd:YAG激光器,脉宽40ps,实验给出C60/C70溶液的非线性折射率n2=(2.3±0.3)×10-11 esu,并给出三阶超极化率r=1.1×10-31 esu。
本文建立了有限几何尺寸棒状激光介质瞬态热分布的三维模型。在普遍情况下推导出温度分布的解析公式。对棒状和slab介质作了对比。使用计算机作了数值计算进一步说明了我们的理论结果。
为应对相干光通信系统中光纤非线性损伤,结合由非线性薛定谔方程的一阶摄动解推导出的三元组,提出一种基于深度神经网络(DNN)和改进型主成分分析(IPCA)的光纤非线性补偿(NLC)算法。为了验证提出的NLC方案的可行性,构建了单通道32 GBaud偏振复用16阶正交幅度调制(PDM-16QAM)的光传输系统。综合数值仿真结果表明,相较于DNN-NLC方案,IPCA-DNN-NLC方案以Q值降低0.06 dB为代价,使计算复杂度降低了90.7%,由此证明IPCA-DNN-NLC方案能以很低的复杂
如何定量计算和预测在不同条件下偏振滤波抑制大气背景光的效果,目前缺乏合适的性能表征量及其计算模型,为此提出了偏振滤波抑制大气背景光的性能计算模型。定义了大气背景光抑制比(ARR),综合天空光相对光谱辐射功率模型和地面太阳直接辐射光谱模型、地物反射特性等,给出了以太阳方位、相机光轴方向、大气能见度和地物光谱反射率等为输入参数的ARR计算公式。该模型的仿真实验结果表明,在晴天与轻霾天气条件下,太阳夹角、大气能见度和地物类型三因素的变化对ARR的影响依次减弱;太阳夹角的变化强烈影响ARR;偏振滤波对多数地物取得