论文部分内容阅读
AIM To retrospectively evaluate the diagnostic performance of free-breathing diffusion-weighted imaging(FB-DWI) with modified imaging parameter settings for detecting hepatocellular carcinomas(HCCs).METHODS Fifty-one patients at risk for HCC were scanned with both FB-DWI and respiratory-triggered DWI with the navigator echo respiratory-triggering technique(RTDWI).Qualitatively,the sharpness of the liver contour,the image noise and the chemical shift artifacts on each DWI with b-values of 1000 s/mm2 were independently evaluated by three radiologists using 4-point scoring.Wecompared the image quality scores of each observer between the two DWI methods,using the Wilcoxon signed-rank test.Quantitatively,we compared the signal-to-noise ratios(SNRs) of the liver parenchyma and lesion-to-nonlesion contrast-to-noise ratios(CNRs) after measuring the signal intensity on each DWI with a b-factor of 1000 s/mm2.The average SNRs and CNRs between the two DWI methods were compared by the paired t-test.The detectability of HCC on each DWI was also analyzed by three radiologists.The detectability provided by the two DWI methods was compared using Mc Nemar’s test.RESULTS For all observers,the averaged image quality scores of FB-DWI were:Sharpness of the liver contour [observer(Obs)-1,3.08 ± 0.81;Obs-2,2.98 ± 0.73;Obs-3,3.54 ± 0.75],those of the distortion(Obs-1,2.94 ± 0.50;Obs-2,2.71 ± 0.70;Obs-3,3.27 ± 0.53),and the chemical shift artifacts(Obs-1,3.38 ± 0.60;Obs-2,3.15 ± 1.07;Obs-3,3.21 ± 0.85).The averaged image quality scores of RTDWI were:Sharpness of the liver contour(Obs-1,2.33 ± 0.65;Obs-2,2.37 ± 0.74;Obs-3,2.75 ± 0.81),distortion(Obs-1,2.81 ± 0.56;Obs-2,2.25 ± 0.74;Obs-3,2.96 ± 0.71),and the chemical shift artifacts(Obs-1,2.92 ± 0.59;Obs-2,2.21 ± 0.85;Obs-3,2.77 ± 1.08).All image quality scores of FB-DWI were significantly higher than those of RT-DWI(P < 0.05).The average SNR of the normal liver parenchyma by FB-DWI(11.0 ± 4.8) was not significantly different from that shown by RT-DWI(11.0 ± 5.0);nor were the lesion-to-nonlesion CNRs significantly different(FB-DWI,21.4 ± 17.7;RT-DWI,20.1 ± 15.1).For all three observers,the detectability of FB-DWI(Obs-1,43.6%;Obs-2,53.6%;and Obs-3,45.0%) was significantly higher than that of RT-DWI(Obs-1,29.1%;Obs-2,43.6%;and Obs-3,34.5%)(P < 0.05).CONCLUSION FB-DWI showed better image quality and higher detectability of HCC compared to RT-DWI,without significantly reducing the SNRs of the liver parenchyma and lesionto-nonlesion CNRs.
AIM To retrospectively evaluate the diagnostic performance of free-breathing diffusion-weighted imaging (FB-DWI) with modified imaging parameter settings for detecting hepatocellular carcinomas (HCCs). METHODS Fifty-one patients at risk for HCC were scanned with both FB-DWI and respiratory-triggered DWI with the navigator echo respiratory-triggering technique (RTDWI). Qualitatively, the sharpness of the liver contour, the image noise and the chemical shift artifacts on each DWI with b-values of 1000 s / mm2 were likely derived by three radiologists using 4-point scoring. We compared the image quality scores of each observer between the two DWI methods, using the Wilcoxon signed-rank test. Quantitatively, we compared the signal-to-noise ratios (SNRs) of the liver parenchyma and lesion- to-nonlesion contrast-to-noise ratios (CNRs) after measuring the signal intensity on each DWI with a b-factor of 1000 s / mm2. The average SNRs and CNRs between the two DWI methods were compared by the paired t-test The detectability of HCC on each DWI was also analyzed by three radiologists. The detectability provided by the two DWI methods was compared using Mc Nemar’s test. RESULTS For all observers, the averaged image quality scores of FB-DWI were: Sharpness of the liver Obs-2, 2.98 ± 0.73; Obs-3, 3.44 ± 0.75], those of the distortion (Obs-1, 2.94 ± 0.50; Obs-2, 2.71 ± 0.70 ; Obs-3, 2.27 ± 0.53), and the chemical shift artifacts (Obs-1, 3.38 ± 0.60; Obs-2, 3.15 ± 1.07; Obs-3, 3.21 ± 0.85) .The averaged image quality scores of RTDWI were: Sharpness of the liver contour (Obs-1, 2.33 ± 0.65; Obs-2, 2.37 ± 0.74; Obs-3, 2.75 ± 0.81), distortion (Obs-1, 2.81 ± 0.56; Obs- -3, 2.96 ± 0.71), and the chemical shift artifacts (Obs-1, 2.92 ± 0.59; Obs-2, 2.21 ± 0.85; Obs-3, 2.77 ± 1.08). All image quality scores of FB-DWI were significantly higher than those of RT-DWI (P <0.05). The average SNR of the normal liver parenchyma by FB-DWI (11.0 ± 4.8) was not significant differen t from that shown bFor all three observers, the detectability of FB-DWI (11.0 ± 5.0); nor were the lesion-to-nonlesion CNRs significantly different (FB-DWI, 21.4 ± 17.7; RT- DWI, 20.1 ± 15.1) Obs-2, 43.6%; and Obs-3, 45.0%) was significantly higher than that of RT-DWI (Obs- 3,34.5%) (P <0.05) .CONCLUSION FB-DWI showed better image quality and higher detectability of HCC compared to RT-DWI, without significant reducing the SNRs of the liver parenchyma and lesionto-nonlesion CNRs.