论文部分内容阅读
分层分布式狄利克雷分布(HD-LDA)算法是一个对潜在狄利克雷分布(LDA)进行改进的基于概率增长模型的文本分类算法,与只能在单机上运行的LDA算法相比,可以运行在分布式框架下,进行分布式并行处理。Mahout在Hadoop框架下实现了HD-LDA算法,但是因为单节点算法的计算量大,仍然存在对大数据分类运行时间太长的问题。而大规模文本集合分散到多个节点上迭代推导,单个节点上文档集合的推导仍是顺序进行的,所以处理大规模文本集合时仍然需要很长时间才能完成全部文本的分类。为此,提出将Hadoop与图形处理