Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nano

来源 :能源化学 | 被引量 : 0次 | 上传用户:it8844
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Dry-spun Carbon Nanotube (CNT) fibers were surface-modified by atmospheric pressure oxygen plasma functionalization using a well controlled and continuous process.The fibers were characterized by scanning electron microscopy (SEM),Raman spectroscopy,and X-ray Photoelectron Spectroscopy (XPS).It was found from the conducted electrochemical measurements that the functionalized fibers showed a 132.8% increase in specific capacitance compared to non-functionalized fibers.Dye-adsorption test and the obtained Randles-Sevcik plot demonstrated that the oxygen plasma functionalized fibers exhibited increased surface area.It was further established by Brunauer-Emmett-Teller (BET) measurements that the surface area of the CNT fibers was increased from 168.22 m2/g to 208.01 m2/g after plasma functionalization.The pore size distribution of the fibers was also altered by this processing.The improved electrochemical data was attributed to enhanced wettability,increased surface area,and the presence of oxygen functional groups,which promoted the capacitance of the fibers.Fiber supercapacitors were fabricated from the oxygen plasma functionalized CNT fiber electrodes using different electrolyte systems.The devices with functionalized electrodes exhibited excellent cyclic stability (93.2% after 4000 cycles),flexibility,bendability,and good energy densities.At 0.5 mA/cm2,the EMIMBF4 device revealed a specific capacitance,which is 27% and 65% greater than the specific capacitances of devices using EMIMTFSI and H2SO4 electrolytes,respectively.The practiced in this work plasma surface processing can be employed in other applications where fibers,yarns,ribbons,and sheets need to be chemically modified.
其他文献
Lithium metal has been considered to be the most promising anode material for the new generation of energy-storage system.However,challenges still stand in protecting lithium metal from spontaneous reactions with electrolytes and preventing the dendritic
Ti-bearing slag (TiO2 >20 wt%) is a valuable titanium secondary resource.The extraction of titanium from the slag is difficult due to the complex composition and structure.Although molten oxide electrolysis is considered as a promising method,silicon will
This work presents an enhanced hydrometallurgical process for recycling lithium ion batteries.First,end-of-life batteries were processed in a physical pre-treatment plant to obtain a representative electrode material.The resulting leachate was purified fo
An optimized graphene/RuO2/S composite is prepared by hydrothermal growth of RuO2 particles on graphene oxide sheets as the positive electrode for rechargeable lithium-sulfur batteries.The electrode with 6.1 wt% RuO2 nanocrystals and a high sulfur content
Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable.Herein,micro-meso-macroporous FeCo-N-C-X (denoted as “M-FeCo-N-C-X”,X represents Fe/Co molar ratio in bimetallic zeolit
The directly selective hydrogenolysis of xylitol to ethylene glycol (EG) and 1,2-propylene glycol (1,2-PDO) was performed on Cu–Ni–ZrO2 catalysts prepared by a co-precipitation method. Upon optimizing the reaction conditions (518 K, 4.0 Mpa H 2 and 3 h),
Porous carbon materials with developed porosity,high surface area and good thermal-and chemical-resistance are advantageous for gas adsorption and separation.However,most carbon adsorbents are in powder form which exhibit high pressure drop when deployed
The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite formation.All-solid-state lithium-sulfur
Research on asymmetric A-D-A structured non-fullerene acceptors has lagged far behind the development of symmetric counterpart.In this contribution,by simply replacing one sulfur atom in indacenodithiophene unit with a selenium atom,an asymmetric building
Rational design of cost-effective high-performance electrocatalysts for oxygen evolution reaction (OER) is of great significance for electrochemical water splitting.Herein,we adopt a nitrogen doping method to fabricate self-supported N-doped CoO nanowire