论文部分内容阅读
传统的用户属性推断方法主要基于机器学习及统计学习,其推断方法忽略了用户的整体表征及任务之间的相关性。本文提出一种基于多任务融合模型的用户属性推断方法,利用doc2vec独特的结构特性,加入文档向量以实现用户整体表征,避免人工提取特征的局限性。为实现用户多属性推断任务,本文提出基于关联学习的多任务融合推断框架,即在分别识别用户多个属性基础上赋予单用户多属性表征,在增强用户整体表征能力的同时,建立多个属性间的关联关系,提高单任务学习的区分度;然后采用模型融合技术,完成属性间关联学习,提高学习准确率及模型泛化能