论文部分内容阅读
朴素贝叶斯分类模型一种简单而高效的分类模型.但它的条件独立性假设使其无法将属性间的依赖表达出来,影响了它分类的正确率。属性间的依赖关系与属性本身的特性有关,有些属性的特性决定了其他属性必然依赖于它.即强属性。文中通过分析属性相关性的度量和贝叶斯定理的变形公式,介绍了强属性的选择方法,通过在强弱属性之间添加增强弧以弱化朴素贝叶斯的独立性假设.扩展了朴素贝叶斯分类模型的结构。在此基础上提出一种基于强属性限定的贝叶斯分类模型SANBC。实验结果表明,与朴素贝叶斯分类模型相比,SANBC分类模型具有较高的分类正确