论文部分内容阅读
讨论了非线性波动方程{((б)2t-△x)uε+F(εα|p-1(б)tuε)=0,(t,x)∈[0,T]×R3,uε|t=0=εU0(r,r-r0/ε),(б)tuε|t=0=U1(r,r-r0/ε).}当p>2,α=p-2时解在穿过焦点(r0,0)后的性态,其中F1在上是一致Lipschitz的.通过变量变换,将问题转化为讨论无穷远处的解,引入一个关键函数讨论脉冲波穿过焦点后(t→+∞)的性态.