【摘 要】
:
The lag (latency) time (LT) is known in dermatology clinic as an asymptomatic period till the development of skin eruptions. In the laboratory, the LT might determine the interval from \zero" point until the peak(s) of changes in measured laboratory par
【机 构】
:
MCProfessionalOU€,V~oistluse23/25-35,Tallinn10132,Estonia
【出 处】
:
JournalofInnovativeOpticalHealthSciences
论文部分内容阅读
The lag (latency) time (LT) is known in dermatology clinic as an asymptomatic period till the development of skin eruptions. In the laboratory, the LT might determine the interval from \zero" point until the peak(s) of changes in measured laboratory parameter during the performed test. This paper discusses methodological and technical aspects of precise measurement of the LT in the living healthy and pathological skin by laser and optical technologies through clinical and experimental applications in dermatology. Based on a dynamics approach to measure, calculate and interpret the LT in blood and in interstitial fluid compartments of the skin tissue, this method has a potential to promote deeper understanding of the role of complex dynamic processes in the skin at a level of a molecule, and/or an organ in a whole organism. The method of the LT measurement in vivo also promotes new understanding of (patho)physiological, diagnostic and pharmacological aspects of certain dynamic skin lesions and dynamic complex processes that happen in the skin. Utilized laser and optical techniques showed high reliability and objectivity in collecting data from rapidly changed skin lesions and processes, demonstrating the LT measurement as a very easy-to-use calculation procedure with high informativity, which is extremely important for the clinical and laboratory environment.
其他文献
In this paper, a substrate removing technique in a silicon Mach–Zehnder modulator (MZM) is proposed and demonstrated to improve modulation bandwidth. Based on the novel and optimized traveling wave electrodes, the electrode transmission loss is reduced, a
近20年来,从越来越小的CO2激光器获得越来越高功率的探索在不断进行。美国拉夫巴勒理工学院最近的工作为其它研究者建立了一个新目标。该校从非折迭腔长约为60厘米、直径15厘米的激光器获得3.5千瓦输出。提高性能的关键是在腔的一端采用12个多孔阳极,另一端6个阴极。激光气体通过阳极注入改善了此种激光器的放电特性,相对单电极来说,它为阳极附近激光气体提供紊流区域。电光效率超过20%。
激光能量由激光照射靶而转换成X射线的高效率,对各种动力学(脉冲)研究有着巨大的意义。例如:激光聚爆靶的射线照射术,衍射和吸收精细结构的结构测定,和X射线激光泵浦。这里报道了用三倍频钕玻璃激光器以~5×1014瓦/厘米2照射各种材料制成的靶的工作。我们发现,各条X射线能量在1.8到7.8千电子伏之间时,转换效率在1%和0.1%(相对于入射激光能量)之间。这些效率比用1.06微米激光达到的值高一个数量级以上。
Many attempts have been made to standardize the calculation of whiteness. Whiteness formulas currently in use satisfactorily characterize the appearance of commercial whiteness. However, they have poor correlations with the observers' evaluations, and ar
介绍了一种用于荧光寿命图像数据分析的高精度列文伯格-马克夸特(LM)迭代算法。该算法的性能经过标准荧光寿命试剂以及生物图像的算法验证。该算法适用于不同的荧光衰减模型,相对于普通的非线性最小二乘估计方法具有更高的精度。结果表明,列文伯格-马克夸特算法是一种高精度、适用性广的荧光寿命图像计算方法,可以满足生物学、生物化学、生物物理学、医学诊断等实际应用的需求。
提出一个在耦合腔中实现两原子间最大纠缠态的制备稳定的理论方案,其中双能级原子与两个量子化的腔场之间都是大失谐作用,同时,每个原子额外受到两个微弱经典场的非共振驱动。引入非局域的玻色膜,两个原子都与其中一个集合光腔膜发生共振,而与另一个集合光腔膜之间是大失谐。在缀饰态子空间中,通过经典场的幺正动力学和集合光腔膜的耗散通道联合作用来制备目标稳态。稳态的制备并不要求有特殊的初态,数值仿真表明,利用所提方案可以获得高保真度的Bell态,所提方案对系统参量的细微抖动具有稳健性。
由于半导体量子点具有很强的三维量子限制效应,量子点(QD)激光器展现出低阈值电流、高调制速率、高温度稳定、低线宽增强因子和高抗反射等优异性能,有望在未来高速光通信及高速光互连等领域有重要的应用。同时,量子点结构具有对位错不敏感的特性,使得量子点激光器成为实现硅光集成所迫切需求的高效光源强有力候选者。先简要综述1.3 μm半导体量子点激光器的研究进展,再着重介绍GaAs基量子点激光器在阈值电流密度、温度稳定性、调制速率和抗反射特性等方面展示出的优异特性,最后对在切斜Si衬底和Si(001)衬底上直接外延生长
设计并研制了一种结构紧凑的高功率超连续光源。利用1.5 m掺Yb3 双包层结构大模场面积光子晶体光纤作为激光增益介质, 0°光纤端面作为一端腔镜和耦合输出, 半导体可饱和吸收镜作为另一端腔镜并启动和稳定锁模, 利用光栅对进行腔内色散补偿, 搭建了高功率抽运源, 输出平均功率1.5 W, 脉冲宽度494 fs, 重复频率55 MHz。系统分析了腔内动力学过程, 阐明了这种激光器的锁模运作机理。抽运1 m长光子晶体光纤, 产生了超过一个倍频程的超平坦超连续光谱(680~1450 nm), 输出功率500 mW
MEMS器件微结构的运动特性影响器件的性能和可靠性。为实现微结构周期运动过程中各个时刻的旋转角度的测量,提出一种基于傅里叶梅林(Fourier-Mellin)变换和相位相关算法的旋转角度测量方法。利用傅里叶梅林变换算法的旋转不变性,将图像空间坐标转换为对数极坐标的参数空间,旋转角度变化转化为平移的运动,然后利用相位相关的亚像素平移测量算法,得到微结构旋转角度。实验结果表明,该算法旋转角度测量分辨率