论文部分内容阅读
为了提高植物叶片图像的识别准确率,考虑到植物叶片数据库属于小样本数据库,提出了一种基于迁移学习的卷积神经网络植物叶片图像识别方法。首先对植物叶片图像进行预处理,通过对原图的随机水平、垂直翻转、随机缩放操作,扩充植物叶片图像数据集,对扩充后的叶片图像数据集样本进行去均值操作,并以4∶1的比例划分为训练集和测试集;然后将训练好的模型(Alex Net、Inception V3)在植物叶片图像数据集上进行迁移训练,保留预训练模型所有卷积层的参数,只替换最后一层全连接层,使其能够适应植物叶片图像的识别;最后