论文部分内容阅读
钢轨表面缺陷具有独特性和稀疏性,利用机器视觉技术自动地检测钢轨表面缺陷仍存在很大挑战。提出一种基于背景建模的钢轨表面缺陷像素级检测方法,利用钢轨图像固有特性构建图像背景分布模型,找到背景分布簇中心,以定位到可疑像素点;提出一种钢轨表面缺陷像素级识别方法,根据可疑像素点的上下文特征和空间位置先验概率识别该像素点是否属于真实缺陷,并在钢轨缺陷数据集和实际线路上进行试验验证。研究结果表明:该方法在重载铁路和客运铁路2种钢轨缺陷数据集上均取得良好的识别性能,并在实际线路上达到100%的检测率。