Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires

来源 :PhotonicsResearch | 被引量 : 0次 | 上传用户:digitalmachineu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The eigenmodes analysis of Bloch modes in a chain of metallic nanowires (MNWs) provides a significant physical understanding about the light propagation phenomena involved in such structures. However, most of these analyses have been done above the light line in the dispersion relation, where the Bloch modes can only be excited with radiative modes. By making use of the Fourier modal method, in this paper we rigorously calculate the eigenmode and mode excitation of a chain of MNWs via the fundamental transverse magnetic (TM) mode of a dielectric waveguide. Quadrupolar and dipolar transversal Bloch modes were obtained in an MNW chain embedded in a dielectric material. These modes can be coupled efficiently with the fundamental TM mode of the waveguide. Since the eigenmodes supported by the integrated plasmonic structure exhibit strong localized surface plasmon (LSP) resonances, they could serve as a nanodevice for sensing applications. Also, the analysis opens a direction for novel nanostructures, potentially helpful for the efficient excitation of LSPs and strong field enhancement.
其他文献
At cryogenic temperature, a fiber Bragg grating (FBG) temperature sensor with controllable sensitivity and variable measurement range is demonstrated by using bimetal configuration. In experiments, sensitivities of -51.2, -86.4, and -520 pm/K are achieved