论文部分内容阅读
为实现对不同操作条件(操作压力、料液质量浓度和温度)下的牛血清白蛋白溶液死端微滤膜通量的预测,以训练步数、绝对相对误差和相关系数作为预测的衡量指标,并对所建立的3层BP神经网络和RBF神经网络基本模型的内部参数进行了优化.优化的BP神经网络模型的拓朴结构为3-9—1,学习率为0.05,学习/训练函数为traingdx,隐层到输出层的传递函数为logsig,该网络对牛血清白蛋白(BSA)溶液膜通量预测的平均绝对相对误差为2.37%,相关系数为0.9960;优化的RBF神经网络的网络设计函数为newrbe,散