论文部分内容阅读
Common short bolts of equal length are widely used to support the roofs of roadways in coal mines.However, they are insufficient to keep the roof stable against large deformations, so docking long bolts with high levels of elongation that can adapt to large deformations of the surrounding rock have been adopted. This paper proposes a collaborative support method that uses long and short bolts. In this study,the mechanism of docking long bolts and collaborative support was studied. Numerical simulation, similarity simulation, and field testing were used to analyze the distribution law of the displacement, stress,and plastic failure in the surrounding rock under different support schemes. Compared with the equal-length short bolt support, the collaborative support changed the maximum principal stress of the shallow roof from tensile stress to compressive stress, and the minimum principal stress of the roof significantly increased. The stress concentration degree of the anchorage zone clearly increased. The deformation of the roof and the two sides was greatly reduced, and the subsidence shape of the shallow roof changed from serrated to a smooth curve. The roof integrity was enhanced, and the roof moved down as a whole. Plastic failure significantly decreased, and the plastic zone of the roof was within the anchorage range. The similarity simulation results showed that, under the maximum mining stress,the roof collapsed with the equal-length short bolt support but remained stable with the collaborative support. The collaborative support method was successfully applied in the field and clearly improved the stability of the surrounding rock for a large deformation roadway.
Common short bolts of equal length are widely used to support the roofs of roadways in coal mines. However, they are insufficient to keep the roof stable against large deformations, so docking long bolts with high levels of elongation that can adapt to large deformations of the surrounding rock have been adopted. This paper proposes a collaborative support method that uses long and short bolts. In this study, the mechanism of docking long bolts and collaborative support was studied. Numerical simulation, similarity simulation, and field testing were used to analyze the distribution law of the displacement, stress, and plastic failure in the surrounding rock under different support schemes. compared with the equal-length short bolt support, the collaborative support changed the maximum principal stress of the shallow roof from tensile stress to compressive stress, and the minimum principal stress of the roof significantly increased. The stress concentration degree of the anchorage zone cle The deformation of the roof and the two sides was greatly reduced, and the subsidence shape of the shallow roof changed from serrated to a smooth curve. The roof integrity was enhanced, and the roof moved down as a whole. decreased, and the plastic zone of the roof was within the anchorage range. The similarity simulation results showed that under the maximum mining stress, the roof collapsed with the equal-length short bolt support but remained stable with the collaborative support. The collaborative support method was successfully applied in the field and clearly improved the stability of the surrounding rock for a large deformation roadway.